Search results for "Lipid–protein interaction"

showing 3 items of 3 documents

Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes

1999

Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterolcontaining phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, u…

0106 biological sciencesPhytophthoraTime FactorsStigmasterolBiophysics01 natural sciencesMicelleBiochemistryFluorescenceFungal Proteins03 medical and health scienceschemistry.chemical_compoundErgosterolpolycyclic compoundsMicellesPlant Proteins030304 developmental biology0303 health sciencesLiposomeStigmasterolChemistryVesicleAlgal ProteinsCell MembraneProteinsElicitinBiological membraneLipid–protein interactionCell BiologyPlantsElicitinSterolsCholesterolMembraneBiochemistryDehydroergosterolLiposomeslipids (amino acids peptides and proteins)CryptogeinCarrier ProteinsFluorescence anisotropy010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium

2005

International audience; The small heat shock proteins (sHSP) are characterized by a chaperone activity to prevent irreversible protein denaturation. This study deals with the sHSP Lo18 induced by multiple stresses in Oenococcus oeni, a lactic acid bacterium. Using in situ immunocytochemistry and cellular fractionation experiments, we demonstrated the association of Lo18 with the membrane in O. oeni cells submitted to heat shock. The same result was obtained after exposure of cells to ethanol or benzyl alcohol, agents known to have an influence on membranes. For the different stresses, the protein was located on the periphery of the cell at membrane level and was also found within the cytopl…

DiphenylhexatrieneHot TemperatureBiophysicsFluorescence PolarizationBiologyBiochemistryImmunolocalizationSmall HSPCell membraneMembrane Lipids03 medical and health scienceschemistry.chemical_compoundHeat shock proteinMembrane fluiditymedicineMembrane fluidityLipid bilayer030304 developmental biologyOenococcus oeni0303 health sciences030306 microbiologyCell MembraneLipid–protein interactionCell Biologybiology.organism_classificationHeat-Shock Proteins SmallGram-Positive CocciMembranemedicine.anatomical_structure[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryBiochemistryBiophysicsLipochaperoneLaurdanOenococcus oeni
researchProduct

Fatty acids bind to the fungal elicitor cryptogein and compete with sterols

2001

Abstract Cryptogein is a proteinaceous elicitor of plant defense reactions which also exhibits sterol carrier properties. In this study, we report that this protein binds fatty acids. The stoichiometry of the fatty acid–cryptogein complex is 1:1. Linoleic acid and dehydroergosterol compete for the same site, but elicitin affinity is 27 times lower for fatty acid than for sterol. We show that C7 to C12 saturated and C16 to C22 unsaturated fatty acids are the best ligands. The presence of double bonds markedly increases the affinity of cryptogein for fatty acids. A comparison between elicitins and known lipid transfer proteins is discussed.

Phytophthora0106 biological sciencesDouble bondLinoleic acidBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyBinding Competitive01 natural sciencesBiochemistryFungal ProteinsLinoleic AcidLIAISON MOLECULAIREStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundStructural BiologyErgosterolGeneticsPlant defense against herbivoryMolecular Biology[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSSterol030304 developmental biologychemistry.chemical_classification0303 health sciencesAlgal ProteinsFatty AcidsProteinsFatty acidLipid–protein interactionElicitinCell BiologyFatty acidElicitinSterol3. Good healthElicitorSterolschemistryBiochemistrylipids (amino acids peptides and proteins)Plant lipid transfer proteinsProtein Binding010606 plant biology & botany
researchProduct